
Fundamentals of Electrostatics

■ Electrostatics is the branch of 
electromagnetics dealing with the effects 
of electric charges at rest.

■ The fundamental law of electrostatics is 
Coulomb’s law.
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Electrical phenomena caused by friction are part 
of our everyday lives, and can be understood in 
terms of electrical charge.
Electrical charge is that entity due to presence of 
which a stationary particle can response in an 
electrostatic field.
The effects of electrical charge can be
observed in the attraction/repulsion of various 
objects when “charged.”
Charge comes in two varieties called “positive” 
and “negative.”

Electric Charge
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Electric Charge

Objects carrying a net positive charge attract 
those carrying a net negative charge and repel 
those carrying a net positive charge.
Objects carrying a net negative charge attract 
those carrying a net positive charge and repel 
those carrying a net negative charge.
On an atomic scale, electrons are negatively 
charged and nuclei are positively charged.



Electric Charge

Electric charge is inherently quantized such that 
the charge on any object is an integer multiple of 
the smallest unit of charge which is the 
magnitude of the electron charge
e = 1.602 xlO-19C.
On the macroscopic level, we can assume that 
charge is “continuous.”



Coulomb’s Law

Coulomb'S law is the “law of action” between 
charged bodies.
Coulomb ’s law gives the electric force between 
two point charges in an otherwise empty 
universe.
A point charge is a charge that occupies a 
region of space which is negligibly small 
compared to the distance between the point 
charge and any other object.



Coulomb’s Law
Qi

6



Coulomb’s Law

The force on Q1 due to Q2 is equal in 
magnitude but opposite in direction to the 
force on Q2 due to Qj.

F  21 =  —F 12



Electric Field

Consider a point charge 
Q placed at the origin of a 
coordinate system in an 
otherwise empty universe.

■ A test charge Qt brought 
near Q experiences a 
force:
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Electric Field

The existence of the force on Qt can be 
attributed to an electric field produced by Q.
The electric field produced by Q at a point in 
space can be defined as the force per unit charg 
acting on a test charge Qt placed at that point.

F qE -  lim



Electric Field
■ The basic units of electric field are newtons 

per coulomb.

■ In practice, we usually use volts per meter.
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Continuous Distributions of
Charge

■ Charge can occur as
■ point cha rges (C)
■ Volume cha rges  (C/m3) <£= most general
■ surface cha rges  (C /m2)
■ line cha rges  (C / m)
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Electrostatic Potential

■ An electric field is a force field.
■ If a body being acted on by a force is 

moved from one point to another, then 
work is done.

■ The concept of scalar electric potential
provides a measure of the work done in 
moving charged bodies in an 
electrostatic field.
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Electrostatic Potential
■ The work done in moving a test chatge from 

one point to another in a region of electric

a a
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Electrostatic Potential

■ The electrostatic field is :
■ The value of the line integral depends only 

on the end points and is independent of 
the path taken.

■ The value of the line integral around any 
closed path is zero.

E-dl = 0j
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Electrostatic Potential

■ The work done per unit charge in moving a 
test charge from point a to point b is the 
electrostatic potential difference between 
the two points:

electrostatic potential difference 
Units are volts.
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Electrostatic Potential
■ Since the electrostatic field is 

conservative we can write
b P0 b

Vab=-\E-*dl- = - \ p * dl- - \ p * dl-
a a P0

b
A (  «

- f  E*dl_- -  f  E *J
i  J

V (b)-V (a)
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Electrostatic Potential

■ Thus the electrostatic potential V is a
scalar field that is defined at every point in 
space.

■ In particular the value of the electrostatic 
potential at any point P is given by

p
V(r) = -\E *dl_

”°  ̂ — reference point
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Electrostatic Potential

■ The reference point (P0 is where the potential 
is zero (analogous to ground in a circuit).

■ Often the reference is taken to be at infinity so 
that the potential of a point in space is defined
as

p
V{r) = - \ E » d l_
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■ The work done in moving a point charge 
from point a to point b can be written as

Electrostatic Potential and
Electric Field
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Electrostatic Potential and
Electric Field

■ Along a short path of length Al we have

A W = QAF = -Q E A l
or

AV = -E-Al_
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Electrostatic Potential and
Electric Field

■ Along an incremental path of length dl we 
have dV = -E-d

■ Recall from the definition of directional 
derivative:

dV = VV-dl_
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Electrostatic Potential and
Electric Field

■ Thus:

the “del” or “nabla” operator
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Visualization of Electric Fields

■ An electric field (like any vector field) can be 
visualized using flux lines (also called streamlines 
or lines of force).

■ A flux line is drawn such that it is everywhere 
tangent to the electric field.

■ A quiver plot is a plot of the field lines constructed 
by making a grid of points. An arrow whose tail is 
connected to the point indicates the direction and 
magnitude of the field at that point.
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Visualization of Electric
Potentials

■ The scalar electric potential can be visualized using
equipotential surfaces.

■ An equipotential surface is a surface over which V  
is a constant.

■ Because the electric field is the negative of the 
gradient of the electric scalar potential, the electric 
field lines are everywhere normal to the 
equipotential surfaces and point in the direction of 
decreasing potential.
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Faraday’s Experiment

charged sphere
(+0

metal

insulator
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Faraday’s Experiment (Cont’d)

■ Two concentric conducting spheres are 
separated by an insulating material.

■ The inner sphere is charged to +Q. The 
outer sphere is initially uncharged.

■ The outer sphere is grounded momentarily.
■ The charge on the outer sphere is found to 

be -Q.
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Faraday’s Experiment (Cont’d)

■ Faraday concluded there was a
“displacement” from the charge on the inner 
sphere through the inner sphere through the 
insulator to the outer sphere.

■ The electric displacement (or electric flux)
is equal in magnitude to the charge that 
produces it, independent of the insulating 
material and the size of the spheres.
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Electric Displacement (Electric
Flux)
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■ The density of electric displacement is the 
e lectr ic (displacement) flux density, D.

■ In free space the relationship between flux density 
and electric field is

D = s0E

Electric (Displacement) Flux
Density
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■ The electric (displacement) flux density for 
a point charge centered at the origin is

Electric (Displacement) Flux
Density (Cont’d)
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■ Gauss’s law states that “the net electric 
flux emanating from a close surface S is 
equal to the total charge contained 
within the volume Abounded by that 
surface.”

§D-ds = Qencl
s

Gauss’s Law
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Gauss’s Law (Cont’d)

By convention, ds 
is taken to be outward 
from the volume V.

Since volume charge 
density is the most

J  qev dv general, we can always write 
V Qencl in this Way-
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Applications of Gauss’s Law

■ Gauss’s law is an integral equation for the 
unknown electric flux density resulting 
from a given charge distribution.

known
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■ In general, solutions to integral equations 
must be obtained using numerical 
techniques.

■ However, for certain symmetric charge 
distributions closed form solutions to 
Gauss’s law can be obtained.

Applications of Gauss’s Law
(Cont’d)
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■ Closed form solution to Gauss’s law relies 
on our ability to construct a suitable family 
of Gaussian surfaces.

■ A Gaussian surface is a surface to which 
the electric flux density is normal and over 
which equal to a constant value.

Applications of Gauss’s Law
(Cont’d)
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Gauss’s Law in Integral Form

^D-ds = Qmcl = \q„dv
S V
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Recall the Divergence Theorem

■ Also called Gauss’s 
theorem or Green’s 
theorem.

d s  =  f  V  -Ddv
S  V

■ Holds for any volume
mf

and corresponding 
closed surface.
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Applying Divergence Theorem to
Gauss’s Law

i  D • ds = [ V • D = [ qev dv
S V V

=> Because the above must hold for any 
volume V, we must have

Differential form 
of Gauss’s Law
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The Need for Poisson’s and 
Laplace’s Equations (Cont’d)

■ Poisson ’s equation is a differential equation for the 
electrostatic potential V. Poisson’s equation and the 
boundary conditions applicable to the particular 
geometry form a boundary-value problem that can 
be solved either analytically for some geometries or 
numerically for any geometry.

■ After the electrostatic potential is evaluated, the 
electric field is obtained using

E ( r ) = - V V ( r )
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Derivation of Poisson’s Equation

■ For now, we shall assume the only 
materials present are free space and 
conductors on which the electrostatic 
potential is specified. However, Poisson’s 
equation can be generalized for other 
materials (dielectric and magnetic as well).
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Derivation of Poisson’s Equation
(Cont’d)

V D  = qe

E = - V V  

V 2V

V E  = qev

0

V -VV ~ - qev

0
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Derivation of Poisson’s Equation
(Cont’d)

Poisson’s
equation

=> V2 is the Laplacian operator. The Laplacian of a scalar 
function is a scalar function equal to the divergence of the 
gradient of the original scalar function.
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L a p la c ia n  O p e ra to r  in  C a rte s ia n ,  

C y lin d r ic a l,  a n d  S p h e r ic a l C o o rd in a te s
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Laplace’s Equation
■ Laplace ’s equation is the homogeneous 

form of Poisson’s equation.
■ We use Laplace’s equation to solve problems 

where potentials are specified on conducting 
bodies, but no charge exists in the free space 
region.

Laplace’s 
equationV 2V = 0
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Uniqueness Theorem

■ A solution to Poisson’s or Laplace’s 
equation that satisfies the given boundary 
conditions is the unique (i.e., the one and 
only correct) solution to the problem.
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Fundamental Laws of
Electrostatics in Integral Form

Conservative field 

Gauss’s law

D =  sE Constitutive relation
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Fundamental Laws of Electrostatics
in Differential Form

V x E  = 0 ' 

V Z )  =  q ‘—  I ev

Conservative field

Gauss’s law

D = sE Constitutive relation
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Fundamental Laws of 
Electrostatics

■ The integral forms of the fundamental laws are 
more general because they apply over regions of 
space. The differential forms are only valid at a 
point.

■ From the integral forms of the fundamental laws 
both the differential equations governing the 
field within a medium and the boundary 
conditions at the interface between two media 
can be derived.
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Boundary Conditions

■ Within a homogeneous medium, there are 
no abrupt changes in E  or D. However, at 
the interface between two different media 
(having two different values of s), it is 
obvious that one or both of these must 
change abrupdy.
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Boundary Conditions (Cont’d)

■ To derive the boundary conditions on the 
normal and tangential field conditions, we 
shall apply the integral form of the two 
fundamental laws to an infinitesimally 
small region that lies partially in one 
medium and partially in the other.
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Boundary Conditions (Cont’d)

■ Consider two semi-infinite media separated by a 
boundary. A surface charge may exist at the 
interface.

Medium 1
x x x x

Medium 2
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■ Locally, the boundary will look planar

Boundary Conditions (Cont’d)

*1 X X X X X X

^ 2 F D_ 2  * _ 2

52



Component of D
• Consider an infinitesimal cylinder (pillbox) with 
cross-sectional area As and height lying half in
medium 1 and half in medium 2:

Boundary Condition on Normal

Ah/2

 ̂ ^ . 2

n
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§D'ds = jq evdv 0
S V /

LHS= \D-ds+ f D-ds + w  'ds
top bottom side

= D\„te -  D 2 „te
RHS = q^As

Boundary Condition on Normal
Component of D_(Cont’d)

■ Applying Gauss’s law to the pillbox, we have

54



Boundary Condition on Normal
Component of D (Cont’d)

■ The boundary condition is

■ If there is no surface charge
For non-conducting 
materials, = 0 unless 
an impressed source is 
present.
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Boundary Condition on 
Tangential Component of E

• Consider an infinitesimal path a b e d  with width 
and height Ah lying half in medium 1 and half in 
medium 2:

d
A w _  E t , D t a „

a S \
Ah/2 T" -i
Ah/2 y--- 4------ b „

 ̂ ^ 2  J

56



Boundary Condition on Tangential 
Component of E (Cont’d)

as = unit vecto r perpendicu lar to path abed 
in the direction defined by the contour 

a t = a s x an = unit vecto r tangenti al to the
boundary along path
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Boundary Condition on Tangential
Component of E (Cont’d)

■ Applying conservative law to the path, we have

\E-dl_ = 0
C

b c d a
LHS =[E-d l+ \E -d l_+\E -d l+[E -d l

a b e d
Ah
2

-E2tAw + EXn —  + EuAw
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Boundary Condition on Tangential 
Component of E (Cont’d)

■ The boundary condition is
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Electrostatic Boundary 
Conditions - Summary

■ At any point on the boundary,
■ the components of E 1  and E 2  tangential to 

the boundary are equal
■ the components of Dt and D 2  normal to the 

boundary are discontinuous by an amount 
equal to any surface charge existing at that 
point
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